function [J, grad] = costFunctionReg(theta, X, y, lambda) %COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization % J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using % theta as the parameter for regularized logistic regression and the % gradient of the cost w.r.t. to the parameters. % Initialize some useful values m = length(y); % number of training examples % You need to return the following variables correctly z = hypothesis(theta, X); t = lambda*(sum(theta .^ 2)-theta(1)^2)/2/m; J = mean(- y .* log(z) + (y - 1) .* log(1 - z)) + t; grad = mean((z - y) .* X)' + lambda /m * theta; grad(1) = grad(1) - lambda /m * theta(1); % ====================== YOUR CODE HERE ====================== % Instructions: Compute the cost of a particular choice of theta. % You should set J to the cost. % Compute the partial derivatives and set grad to the partial % derivatives of the cost w.r.t. each parameter in theta % ============================================================= end