function submit() addpath('./lib'); conf.assignmentSlug = 'regularized-linear-regression-and-bias-variance'; conf.itemName = 'Regularized Linear Regression and Bias/Variance'; conf.partArrays = { ... { ... '1', ... { 'linearRegCostFunction.m' }, ... 'Regularized Linear Regression Cost Function', ... }, ... { ... '2', ... { 'linearRegCostFunction.m' }, ... 'Regularized Linear Regression Gradient', ... }, ... { ... '3', ... { 'learningCurve.m' }, ... 'Learning Curve', ... }, ... { ... '4', ... { 'polyFeatures.m' }, ... 'Polynomial Feature Mapping', ... }, ... { ... '5', ... { 'validationCurve.m' }, ... 'Validation Curve', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxstring) % Random Test Cases X = [ones(10,1) sin(1:1.5:15)' cos(1:1.5:15)']; y = sin(1:3:30)'; Xval = [ones(10,1) sin(0:1.5:14)' cos(0:1.5:14)']; yval = sin(1:10)'; if partId == '1' [J] = linearRegCostFunction(X, y, [0.1 0.2 0.3]', 0.5); out = sprintf('%0.5f ', J); elseif partId == '2' [J, grad] = linearRegCostFunction(X, y, [0.1 0.2 0.3]', 0.5); out = sprintf('%0.5f ', grad); elseif partId == '3' [error_train, error_val] = ... learningCurve(X, y, Xval, yval, 1); out = sprintf('%0.5f ', [error_train(:); error_val(:)]); elseif partId == '4' [X_poly] = polyFeatures(X(2,:)', 8); out = sprintf('%0.5f ', X_poly); elseif partId == '5' [lambda_vec, error_train, error_val] = ... validationCurve(X, y, Xval, yval); out = sprintf('%0.5f ', ... [lambda_vec(:); error_train(:); error_val(:)]); end end