1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556 |
- function [J, grad] = lrCostFunction(theta, X, y, lambda)
- %LRCOSTFUNCTION Compute cost and gradient for logistic regression with
- %regularization
- % J = LRCOSTFUNCTION(theta, X, y, lambda) computes the cost of using
- % theta as the parameter for regularized logistic regression and the
- % gradient of the cost w.r.t. to the parameters.
- % Initialize some useful values
- m = length(y); % number of training examples
- % You need to return the following variables correctly
- z = hypothesis(theta, X);
- t = lambda*(sum(theta .^ 2)-theta(1)^2)/2/m;
- J = mean(- y .* log(z) + (y - 1) .* log(1 - z)) + t;
- grad = mean((z - y) .* X)' + lambda /m * theta;
- grad(1) = grad(1) - lambda /m * theta(1);
- % ====================== YOUR CODE HERE ======================
- % Instructions: Compute the cost of a particular choice of theta.
- % You should set J to the cost.
- % Compute the partial derivatives and set grad to the partial
- % derivatives of the cost w.r.t. each parameter in theta
- %
- % Hint: The computation of the cost function and gradients can be
- % efficiently vectorized. For example, consider the computation
- %
- % sigmoid(X * theta)
- %
- % Each row of the resulting matrix will contain the value of the
- % prediction for that example. You can make use of this to vectorize
- % the cost function and gradient computations.
- %
- % Hint: When computing the gradient of the regularized cost function,
- % there're many possible vectorized solutions, but one solution
- % looks like:
- % grad = (unregularized gradient for logistic regression)
- % temp = theta;
- % temp(1) = 0; % because we don't add anything for j = 0
- % grad = grad + YOUR_CODE_HERE (using the temp variable)
- %
- % =============================================================
- grad = grad(:);
- end
|