1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556 |
- function submit()
- addpath('./lib');
- conf.assignmentSlug = 'multi-class-classification-and-neural-networks';
- conf.itemName = 'Multi-class Classification and Neural Networks';
- conf.partArrays = { ...
- { ...
- '1', ...
- { 'lrCostFunction.m' }, ...
- 'Regularized Logistic Regression', ...
- }, ...
- { ...
- '2', ...
- { 'oneVsAll.m' }, ...
- 'One-vs-All Classifier Training', ...
- }, ...
- { ...
- '3', ...
- { 'predictOneVsAll.m' }, ...
- 'One-vs-All Classifier Prediction', ...
- }, ...
- { ...
- '4', ...
- { 'predict.m' }, ...
- 'Neural Network Prediction Function' ...
- }, ...
- };
- conf.output = @output;
- submitWithConfiguration(conf);
- end
- function out = output(partId, auxdata)
- % Random Test Cases
- X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))'];
- y = sin(X(:,1) + X(:,2)) > 0;
- Xm = [ -1 -1 ; -1 -2 ; -2 -1 ; -2 -2 ; ...
- 1 1 ; 1 2 ; 2 1 ; 2 2 ; ...
- -1 1 ; -1 2 ; -2 1 ; -2 2 ; ...
- 1 -1 ; 1 -2 ; -2 -1 ; -2 -2 ];
- ym = [ 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 ]';
- t1 = sin(reshape(1:2:24, 4, 3));
- t2 = cos(reshape(1:2:40, 4, 5));
- if partId == '1'
- [J, grad] = lrCostFunction([0.25 0.5 -0.5]', X, y, 0.1);
- out = sprintf('%0.5f ', J);
- out = [out sprintf('%0.5f ', grad)];
- elseif partId == '2'
- out = sprintf('%0.5f ', oneVsAll(Xm, ym, 4, 0.1));
- elseif partId == '3'
- out = sprintf('%0.5f ', predictOneVsAll(t1, Xm));
- elseif partId == '4'
- out = sprintf('%0.5f ', predict(t1, t2, Xm));
- end
- end
|