gradientDescentMulti.m 983 B

12345678910111213141516171819202122232425262728293031323334
  1. function [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters)
  2. %GRADIENTDESCENTMULTI Performs gradient descent to learn theta
  3. % theta = GRADIENTDESCENTMULTI(x, y, theta, alpha, num_iters) updates theta by
  4. % taking num_iters gradient steps with learning rate alpha
  5. % Initialize some useful values
  6. m = length(y); % number of training examples
  7. J_history = zeros(num_iters, 1);
  8. for iter = 1:num_iters
  9. % ====================== YOUR CODE HERE ======================
  10. % Instructions: Perform a single gradient step on the parameter vector
  11. % theta.
  12. %
  13. % Hint: While debugging, it can be useful to print out the values
  14. % of the cost function (computeCostMulti) and gradient here.
  15. %
  16. theta = theta - alpha / m * (X' * (X * theta - y));
  17. % ============================================================
  18. % Save the cost J in every iteration
  19. J_history(iter) = computeCostMulti(X, y, theta);
  20. end
  21. end