123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234 |
- %% Machine Learning Online Class - Exercise 4 Neural Network Learning
- % Instructions
- % ------------
- %
- % This file contains code that helps you get started on the
- % linear exercise. You will need to complete the following functions
- % in this exericse:
- %
- % sigmoidGradient.m
- % randInitializeWeights.m
- % nnCostFunction.m
- %
- % For this exercise, you will not need to change any code in this file,
- % or any other files other than those mentioned above.
- %
- %% Initialization
- clear ; close all; clc
- %% Setup the parameters you will use for this exercise
- input_layer_size = 400; % 20x20 Input Images of Digits
- hidden_layer_size = 25; % 25 hidden units
- num_labels = 10; % 10 labels, from 1 to 10
- % (note that we have mapped "0" to label 10)
- %% =========== Part 1: Loading and Visualizing Data =============
- % We start the exercise by first loading and visualizing the dataset.
- % You will be working with a dataset that contains handwritten digits.
- %
- % Load Training Data
- fprintf('Loading and Visualizing Data ...\n')
- load('ex4data1.mat');
- m = size(X, 1);
- % Randomly select 100 data points to display
- sel = randperm(size(X, 1));
- sel = sel(1:100);
- displayData(X(sel, :));
- fprintf('Program paused. Press enter to continue.\n');
- pause;
- %% ================ Part 2: Loading Parameters ================
- % In this part of the exercise, we load some pre-initialized
- % neural network parameters.
- fprintf('\nLoading Saved Neural Network Parameters ...\n')
- % Load the weights into variables Theta1 and Theta2
- load('ex4weights.mat');
- % Unroll parameters
- nn_params = [Theta1(:) ; Theta2(:)];
- %% ================ Part 3: Compute Cost (Feedforward) ================
- % To the neural network, you should first start by implementing the
- % feedforward part of the neural network that returns the cost only. You
- % should complete the code in nnCostFunction.m to return cost. After
- % implementing the feedforward to compute the cost, you can verify that
- % your implementation is correct by verifying that you get the same cost
- % as us for the fixed debugging parameters.
- %
- % We suggest implementing the feedforward cost *without* regularization
- % first so that it will be easier for you to debug. Later, in part 4, you
- % will get to implement the regularized cost.
- %
- fprintf('\nFeedforward Using Neural Network ...\n')
- % Weight regularization parameter (we set this to 0 here).
- lambda = 0;
- J = nnCostFunction(nn_params, input_layer_size, hidden_layer_size, ...
- num_labels, X, y, lambda);
- fprintf(['Cost at parameters (loaded from ex4weights): %f '...
- '\n(this value should be about 0.287629)\n'], J);
- fprintf('\nProgram paused. Press enter to continue.\n');
- pause;
- %% =============== Part 4: Implement Regularization ===============
- % Once your cost function implementation is correct, you should now
- % continue to implement the regularization with the cost.
- %
- fprintf('\nChecking Cost Function (w/ Regularization) ... \n')
- % Weight regularization parameter (we set this to 1 here).
- lambda = 1;
- J = nnCostFunction(nn_params, input_layer_size, hidden_layer_size, ...
- num_labels, X, y, lambda);
- fprintf(['Cost at parameters (loaded from ex4weights): %f '...
- '\n(this value should be about 0.383770)\n'], J);
- fprintf('Program paused. Press enter to continue.\n');
- pause;
- %% ================ Part 5: Sigmoid Gradient ================
- % Before you start implementing the neural network, you will first
- % implement the gradient for the sigmoid function. You should complete the
- % code in the sigmoidGradient.m file.
- %
- fprintf('\nEvaluating sigmoid gradient...\n')
- g = sigmoidGradient([-1 -0.5 0 0.5 1]);
- fprintf('Sigmoid gradient evaluated at [-1 -0.5 0 0.5 1]:\n ');
- fprintf('%f ', g);
- fprintf('\n\n');
- fprintf('Program paused. Press enter to continue.\n');
- pause;
- %% ================ Part 6: Initializing Pameters ================
- % In this part of the exercise, you will be starting to implment a two
- % layer neural network that classifies digits. You will start by
- % implementing a function to initialize the weights of the neural network
- % (randInitializeWeights.m)
- fprintf('\nInitializing Neural Network Parameters ...\n')
- initial_Theta1 = randInitializeWeights(input_layer_size, hidden_layer_size);
- initial_Theta2 = randInitializeWeights(hidden_layer_size, num_labels);
- % Unroll parameters
- initial_nn_params = [initial_Theta1(:) ; initial_Theta2(:)];
- %% =============== Part 7: Implement Backpropagation ===============
- % Once your cost matches up with ours, you should proceed to implement the
- % backpropagation algorithm for the neural network. You should add to the
- % code you've written in nnCostFunction.m to return the partial
- % derivatives of the parameters.
- %
- fprintf('\nChecking Backpropagation... \n');
- % Check gradients by running checkNNGradients
- checkNNGradients;
- fprintf('\nProgram paused. Press enter to continue.\n');
- pause;
- %% =============== Part 8: Implement Regularization ===============
- % Once your backpropagation implementation is correct, you should now
- % continue to implement the regularization with the cost and gradient.
- %
- fprintf('\nChecking Backpropagation (w/ Regularization) ... \n')
- % Check gradients by running checkNNGradients
- lambda = 3;
- checkNNGradients(lambda);
- % Also output the costFunction debugging values
- debug_J = nnCostFunction(nn_params, input_layer_size, ...
- hidden_layer_size, num_labels, X, y, lambda);
- fprintf(['\n\nCost at (fixed) debugging parameters (w/ lambda = %f): %f ' ...
- '\n(for lambda = 3, this value should be about 0.576051)\n\n'], lambda, debug_J);
- fprintf('Program paused. Press enter to continue.\n');
- pause;
- %% =================== Part 8: Training NN ===================
- % You have now implemented all the code necessary to train a neural
- % network. To train your neural network, we will now use "fmincg", which
- % is a function which works similarly to "fminunc". Recall that these
- % advanced optimizers are able to train our cost functions efficiently as
- % long as we provide them with the gradient computations.
- %
- fprintf('\nTraining Neural Network... \n')
- % After you have completed the assignment, change the MaxIter to a larger
- % value to see how more training helps.
- options = optimset('MaxIter', 50);
- % You should also try different values of lambda
- lambda = 1;
- % Create "short hand" for the cost function to be minimized
- costFunction = @(p) nnCostFunction(p, ...
- input_layer_size, ...
- hidden_layer_size, ...
- num_labels, X, y, lambda);
- % Now, costFunction is a function that takes in only one argument (the
- % neural network parameters)
- [nn_params, cost] = fmincg(costFunction, initial_nn_params, options);
- % Obtain Theta1 and Theta2 back from nn_params
- Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
- hidden_layer_size, (input_layer_size + 1));
- Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
- num_labels, (hidden_layer_size + 1));
- fprintf('Program paused. Press enter to continue.\n');
- pause;
- %% ================= Part 9: Visualize Weights =================
- % You can now "visualize" what the neural network is learning by
- % displaying the hidden units to see what features they are capturing in
- % the data.
- fprintf('\nVisualizing Neural Network... \n')
- displayData(Theta1(:, 2:end));
- fprintf('\nProgram paused. Press enter to continue.\n');
- pause;
- %% ================= Part 10: Implement Predict =================
- % After training the neural network, we would like to use it to predict
- % the labels. You will now implement the "predict" function to use the
- % neural network to predict the labels of the training set. This lets
- % you compute the training set accuracy.
- pred = predict(Theta1, Theta2, X);
- fprintf('\nTraining Set Accuracy: %f\n', mean(double(pred == y)) * 100);
|