123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237 |
- %% Machine Learning Online Class
- % Exercise 8 | Anomaly Detection and Collaborative Filtering
- %
- % Instructions
- % ------------
- %
- % This file contains code that helps you get started on the
- % exercise. You will need to complete the following functions:
- %
- % estimateGaussian.m
- % selectThreshold.m
- % cofiCostFunc.m
- %
- % For this exercise, you will not need to change any code in this file,
- % or any other files other than those mentioned above.
- %
- %% =============== Part 1: Loading movie ratings dataset ================
- % You will start by loading the movie ratings dataset to understand the
- % structure of the data.
- %
- fprintf('Loading movie ratings dataset.\n\n');
- % Load data
- load ('ex8_movies.mat');
- % Y is a 1682x943 matrix, containing ratings (1-5) of 1682 movies on
- % 943 users
- %
- % R is a 1682x943 matrix, where R(i,j) = 1 if and only if user j gave a
- % rating to movie i
- % From the matrix, we can compute statistics like average rating.
- fprintf('Average rating for movie 1 (Toy Story): %f / 5\n\n', ...
- mean(Y(1, R(1, :))));
- % We can "visualize" the ratings matrix by plotting it with imagesc
- imagesc(Y);
- ylabel('Movies');
- xlabel('Users');
- fprintf('\nProgram paused. Press enter to continue.\n');
- pause;
- %% ============ Part 2: Collaborative Filtering Cost Function ===========
- % You will now implement the cost function for collaborative filtering.
- % To help you debug your cost function, we have included set of weights
- % that we trained on that. Specifically, you should complete the code in
- % cofiCostFunc.m to return J.
- % Load pre-trained weights (X, Theta, num_users, num_movies, num_features)
- load ('ex8_movieParams.mat');
- % Reduce the data set size so that this runs faster
- num_users = 4; num_movies = 5; num_features = 3;
- X = X(1:num_movies, 1:num_features);
- Theta = Theta(1:num_users, 1:num_features);
- Y = Y(1:num_movies, 1:num_users);
- R = R(1:num_movies, 1:num_users);
- % Evaluate cost function
- J = cofiCostFunc([X(:) ; Theta(:)], Y, R, num_users, num_movies, ...
- num_features, 0);
-
- fprintf(['Cost at loaded parameters: %f '...
- '\n(this value should be about 22.22)\n'], J);
- fprintf('\nProgram paused. Press enter to continue.\n');
- pause;
- %% ============== Part 3: Collaborative Filtering Gradient ==============
- % Once your cost function matches up with ours, you should now implement
- % the collaborative filtering gradient function. Specifically, you should
- % complete the code in cofiCostFunc.m to return the grad argument.
- %
- fprintf('\nChecking Gradients (without regularization) ... \n');
- % Check gradients by running checkNNGradients
- checkCostFunction;
- fprintf('\nProgram paused. Press enter to continue.\n');
- pause;
- %% ========= Part 4: Collaborative Filtering Cost Regularization ========
- % Now, you should implement regularization for the cost function for
- % collaborative filtering. You can implement it by adding the cost of
- % regularization to the original cost computation.
- %
- % Evaluate cost function
- J = cofiCostFunc([X(:) ; Theta(:)], Y, R, num_users, num_movies, ...
- num_features, 1.5);
-
- fprintf(['Cost at loaded parameters (lambda = 1.5): %f '...
- '\n(this value should be about 31.34)\n'], J);
- fprintf('\nProgram paused. Press enter to continue.\n');
- pause;
- %% ======= Part 5: Collaborative Filtering Gradient Regularization ======
- % Once your cost matches up with ours, you should proceed to implement
- % regularization for the gradient.
- %
- %
- fprintf('\nChecking Gradients (with regularization) ... \n');
- % Check gradients by running checkNNGradients
- checkCostFunction(1.5);
- fprintf('\nProgram paused. Press enter to continue.\n');
- pause;
- %% ============== Part 6: Entering ratings for a new user ===============
- % Before we will train the collaborative filtering model, we will first
- % add ratings that correspond to a new user that we just observed. This
- % part of the code will also allow you to put in your own ratings for the
- % movies in our dataset!
- %
- movieList = loadMovieList();
- % Initialize my ratings
- my_ratings = zeros(1682, 1);
- % Check the file movie_idx.txt for id of each movie in our dataset
- % For example, Toy Story (1995) has ID 1, so to rate it "4", you can set
- my_ratings(1) = 4;
- % Or suppose did not enjoy Silence of the Lambs (1991), you can set
- my_ratings(98) = 2;
- % We have selected a few movies we liked / did not like and the ratings we
- % gave are as follows:
- my_ratings(7) = 3;
- my_ratings(12)= 5;
- my_ratings(54) = 4;
- my_ratings(64)= 5;
- my_ratings(66)= 3;
- my_ratings(69) = 5;
- my_ratings(183) = 4;
- my_ratings(226) = 5;
- my_ratings(355)= 5;
- fprintf('\n\nNew user ratings:\n');
- for i = 1:length(my_ratings)
- if my_ratings(i) > 0
- fprintf('Rated %d for %s\n', my_ratings(i), ...
- movieList{i});
- end
- end
- fprintf('\nProgram paused. Press enter to continue.\n');
- pause;
- %% ================== Part 7: Learning Movie Ratings ====================
- % Now, you will train the collaborative filtering model on a movie rating
- % dataset of 1682 movies and 943 users
- %
- fprintf('\nTraining collaborative filtering...\n');
- % Load data
- load('ex8_movies.mat');
- % Y is a 1682x943 matrix, containing ratings (1-5) of 1682 movies by
- % 943 users
- %
- % R is a 1682x943 matrix, where R(i,j) = 1 if and only if user j gave a
- % rating to movie i
- % Add our own ratings to the data matrix
- Y = [my_ratings Y];
- R = [(my_ratings ~= 0) R];
- % Normalize Ratings
- [Ynorm, Ymean] = normalizeRatings(Y, R);
- % Useful Values
- num_users = size(Y, 2);
- num_movies = size(Y, 1);
- num_features = 10;
- % Set Initial Parameters (Theta, X)
- X = randn(num_movies, num_features);
- Theta = randn(num_users, num_features);
- initial_parameters = [X(:); Theta(:)];
- % Set options for fmincg
- options = optimset('GradObj', 'on', 'MaxIter', 100);
- % Set Regularization
- lambda = 10;
- theta = fmincg (@(t)(cofiCostFunc(t, Ynorm, R, num_users, num_movies, ...
- num_features, lambda)), ...
- initial_parameters, options);
- % Unfold the returned theta back into U and W
- X = reshape(theta(1:num_movies*num_features), num_movies, num_features);
- Theta = reshape(theta(num_movies*num_features+1:end), ...
- num_users, num_features);
- fprintf('Recommender system learning completed.\n');
- fprintf('\nProgram paused. Press enter to continue.\n');
- pause;
- %% ================== Part 8: Recommendation for you ====================
- % After training the model, you can now make recommendations by computing
- % the predictions matrix.
- %
- p = X * Theta';
- my_predictions = p(:,1) + Ymean;
- movieList = loadMovieList();
- [r, ix] = sort(my_predictions, 'descend');
- fprintf('\nTop recommendations for you:\n');
- for i=1:10
- j = ix(i);
- fprintf('Predicting rating %.1f for movie %s\n', my_predictions(j), ...
- movieList{j});
- end
- fprintf('\n\nOriginal ratings provided:\n');
- for i = 1:length(my_ratings)
- if my_ratings(i) > 0
- fprintf('Rated %d for %s\n', my_ratings(i), ...
- movieList{i});
- end
- end
|