123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175 |
- function [X, fX, i] = fmincg(f, X, options, P1, P2, P3, P4, P5)
- % Minimize a continuous differentialble multivariate function. Starting point
- % is given by "X" (D by 1), and the function named in the string "f", must
- % return a function value and a vector of partial derivatives. The Polack-
- % Ribiere flavour of conjugate gradients is used to compute search directions,
- % and a line search using quadratic and cubic polynomial approximations and the
- % Wolfe-Powell stopping criteria is used together with the slope ratio method
- % for guessing initial step sizes. Additionally a bunch of checks are made to
- % make sure that exploration is taking place and that extrapolation will not
- % be unboundedly large. The "length" gives the length of the run: if it is
- % positive, it gives the maximum number of line searches, if negative its
- % absolute gives the maximum allowed number of function evaluations. You can
- % (optionally) give "length" a second component, which will indicate the
- % reduction in function value to be expected in the first line-search (defaults
- % to 1.0). The function returns when either its length is up, or if no further
- % progress can be made (ie, we are at a minimum, or so close that due to
- % numerical problems, we cannot get any closer). If the function terminates
- % within a few iterations, it could be an indication that the function value
- % and derivatives are not consistent (ie, there may be a bug in the
- % implementation of your "f" function). The function returns the found
- % solution "X", a vector of function values "fX" indicating the progress made
- % and "i" the number of iterations (line searches or function evaluations,
- % depending on the sign of "length") used.
- %
- % Usage: [X, fX, i] = fmincg(f, X, options, P1, P2, P3, P4, P5)
- %
- % See also: checkgrad
- %
- % Copyright (C) 2001 and 2002 by Carl Edward Rasmussen. Date 2002-02-13
- %
- %
- % (C) Copyright 1999, 2000 & 2001, Carl Edward Rasmussen
- %
- % Permission is granted for anyone to copy, use, or modify these
- % programs and accompanying documents for purposes of research or
- % education, provided this copyright notice is retained, and note is
- % made of any changes that have been made.
- %
- % These programs and documents are distributed without any warranty,
- % express or implied. As the programs were written for research
- % purposes only, they have not been tested to the degree that would be
- % advisable in any important application. All use of these programs is
- % entirely at the user's own risk.
- %
- % [ml-class] Changes Made:
- % 1) Function name and argument specifications
- % 2) Output display
- %
- % Read options
- if exist('options', 'var') && ~isempty(options) && isfield(options, 'MaxIter')
- length = options.MaxIter;
- else
- length = 100;
- end
- RHO = 0.01; % a bunch of constants for line searches
- SIG = 0.5; % RHO and SIG are the constants in the Wolfe-Powell conditions
- INT = 0.1; % don't reevaluate within 0.1 of the limit of the current bracket
- EXT = 3.0; % extrapolate maximum 3 times the current bracket
- MAX = 20; % max 20 function evaluations per line search
- RATIO = 100; % maximum allowed slope ratio
- argstr = ['feval(f, X']; % compose string used to call function
- for i = 1:(nargin - 3)
- argstr = [argstr, ',P', int2str(i)];
- end
- argstr = [argstr, ')'];
- if max(size(length)) == 2, red=length(2); length=length(1); else red=1; end
- S=['Iteration '];
- i = 0; % zero the run length counter
- ls_failed = 0; % no previous line search has failed
- fX = [];
- [f1 df1] = eval(argstr); % get function value and gradient
- i = i + (length<0); % count epochs?!
- s = -df1; % search direction is steepest
- d1 = -s'*s; % this is the slope
- z1 = red/(1-d1); % initial step is red/(|s|+1)
- while i < abs(length) % while not finished
- i = i + (length>0); % count iterations?!
- X0 = X; f0 = f1; df0 = df1; % make a copy of current values
- X = X + z1*s; % begin line search
- [f2 df2] = eval(argstr);
- i = i + (length<0); % count epochs?!
- d2 = df2'*s;
- f3 = f1; d3 = d1; z3 = -z1; % initialize point 3 equal to point 1
- if length>0, M = MAX; else M = min(MAX, -length-i); end
- success = 0; limit = -1; % initialize quanteties
- while 1
- while ((f2 > f1+z1*RHO*d1) || (d2 > -SIG*d1)) && (M > 0)
- limit = z1; % tighten the bracket
- if f2 > f1
- z2 = z3 - (0.5*d3*z3*z3)/(d3*z3+f2-f3); % quadratic fit
- else
- A = 6*(f2-f3)/z3+3*(d2+d3); % cubic fit
- B = 3*(f3-f2)-z3*(d3+2*d2);
- z2 = (sqrt(B*B-A*d2*z3*z3)-B)/A; % numerical error possible - ok!
- end
- if isnan(z2) || isinf(z2)
- z2 = z3/2; % if we had a numerical problem then bisect
- end
- z2 = max(min(z2, INT*z3),(1-INT)*z3); % don't accept too close to limits
- z1 = z1 + z2; % update the step
- X = X + z2*s;
- [f2 df2] = eval(argstr);
- M = M - 1; i = i + (length<0); % count epochs?!
- d2 = df2'*s;
- z3 = z3-z2; % z3 is now relative to the location of z2
- end
- if f2 > f1+z1*RHO*d1 || d2 > -SIG*d1
- break; % this is a failure
- elseif d2 > SIG*d1
- success = 1; break; % success
- elseif M == 0
- break; % failure
- end
- A = 6*(f2-f3)/z3+3*(d2+d3); % make cubic extrapolation
- B = 3*(f3-f2)-z3*(d3+2*d2);
- z2 = -d2*z3*z3/(B+sqrt(B*B-A*d2*z3*z3)); % num. error possible - ok!
- if ~isreal(z2) || isnan(z2) || isinf(z2) || z2 < 0 % num prob or wrong sign?
- if limit < -0.5 % if we have no upper limit
- z2 = z1 * (EXT-1); % the extrapolate the maximum amount
- else
- z2 = (limit-z1)/2; % otherwise bisect
- end
- elseif (limit > -0.5) && (z2+z1 > limit) % extraplation beyond max?
- z2 = (limit-z1)/2; % bisect
- elseif (limit < -0.5) && (z2+z1 > z1*EXT) % extrapolation beyond limit
- z2 = z1*(EXT-1.0); % set to extrapolation limit
- elseif z2 < -z3*INT
- z2 = -z3*INT;
- elseif (limit > -0.5) && (z2 < (limit-z1)*(1.0-INT)) % too close to limit?
- z2 = (limit-z1)*(1.0-INT);
- end
- f3 = f2; d3 = d2; z3 = -z2; % set point 3 equal to point 2
- z1 = z1 + z2; X = X + z2*s; % update current estimates
- [f2 df2] = eval(argstr);
- M = M - 1; i = i + (length<0); % count epochs?!
- d2 = df2'*s;
- end % end of line search
- if success % if line search succeeded
- f1 = f2; fX = [fX' f1]';
- fprintf('%s %4i | Cost: %4.6e\r', S, i, f1);
- s = (df2'*df2-df1'*df2)/(df1'*df1)*s - df2; % Polack-Ribiere direction
- tmp = df1; df1 = df2; df2 = tmp; % swap derivatives
- d2 = df1'*s;
- if d2 > 0 % new slope must be negative
- s = -df1; % otherwise use steepest direction
- d2 = -s'*s;
- end
- z1 = z1 * min(RATIO, d1/(d2-realmin)); % slope ratio but max RATIO
- d1 = d2;
- ls_failed = 0; % this line search did not fail
- else
- X = X0; f1 = f0; df1 = df0; % restore point from before failed line search
- if ls_failed || i > abs(length) % line search failed twice in a row
- break; % or we ran out of time, so we give up
- end
- tmp = df1; df1 = df2; df2 = tmp; % swap derivatives
- s = -df1; % try steepest
- d1 = -s'*s;
- z1 = 1/(1-d1);
- ls_failed = 1; % this line search failed
- end
- if exist('OCTAVE_VERSION')
- fflush(stdout);
- end
- end
- fprintf('\n');
|