|
@@ -0,0 +1,173 @@
|
|
|
+#include "include/version.h"
|
|
|
+#include "include/model.h"
|
|
|
+#include "include/version.h"
|
|
|
+#include "include/context.h"
|
|
|
+#include "include/errorcode.h"
|
|
|
+#include "include/lite_session.h"
|
|
|
+
|
|
|
+#include <iostream>
|
|
|
+#include <string>
|
|
|
+#include <cstdio>
|
|
|
+
|
|
|
+#include "imagenet_label.inc"
|
|
|
+
|
|
|
+// model size limit: 64 MiB
|
|
|
+const int MAX_MODEL_SIZE = 64 * 1024 * 1024;
|
|
|
+
|
|
|
+// dataset
|
|
|
+const std::string IMAGE_FILE = "/data/val_data_c/%05d.bin";
|
|
|
+
|
|
|
+using namespace mindspore;
|
|
|
+using namespace mindspore::lite;
|
|
|
+using namespace mindspore::session;
|
|
|
+
|
|
|
+void read_image(int idx, void *tensor_buf, size_t size)
|
|
|
+{
|
|
|
+ char image[128];
|
|
|
+ sprintf(image, IMAGE_FILE.c_str(), idx);
|
|
|
+ FILE *fp = fopen(image, "rb");
|
|
|
+ fread(tensor_buf, sizeof(char), size, fp);
|
|
|
+ fclose(fp);
|
|
|
+}
|
|
|
+
|
|
|
+void print_tensor(tensor::MSTensor *t)
|
|
|
+{
|
|
|
+ float *data_ptr = static_cast<float *>(t->MutableData());
|
|
|
+ for (int i = 0; i < t->ElementsNum(); ++i)
|
|
|
+ {
|
|
|
+ std::cout << data_ptr[i] << ", ";
|
|
|
+ if (i % 13 == 12)
|
|
|
+ {
|
|
|
+ std::cout << std::endl;
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+int arg_max(tensor::MSTensor *t)
|
|
|
+{
|
|
|
+ float *data_ptr = static_cast<float *>(t->MutableData());
|
|
|
+ float max_val = 0.f;
|
|
|
+ int max_idx = -1;
|
|
|
+ for (int i = 0; i < t->ElementsNum(); ++i)
|
|
|
+ {
|
|
|
+ if (data_ptr[i] > max_val)
|
|
|
+ {
|
|
|
+ max_idx = i;
|
|
|
+ max_val = data_ptr[i];
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return max_idx;
|
|
|
+}
|
|
|
+
|
|
|
+int main(int argc, const char *argv[])
|
|
|
+{
|
|
|
+ if (argc != 3)
|
|
|
+ {
|
|
|
+ std::cout << "usage: ./classification your_model.ms image_num" << std::endl;
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+ std::string version = mindspore::lite::Version();
|
|
|
+ std::cout << "version: " << version << std::endl;
|
|
|
+
|
|
|
+ // load model
|
|
|
+ FILE *fp = fopen(argv[1], "rb");
|
|
|
+ char *model_buf = new char[MAX_MODEL_SIZE];
|
|
|
+ size_t model_size = fread(model_buf, sizeof(char), MAX_MODEL_SIZE, fp);
|
|
|
+ fclose(fp);
|
|
|
+ std::cout << "model: " << argv[1] << ", size: " << model_size << " Bytes" << std::endl;
|
|
|
+
|
|
|
+ Model *model = Model::Import(model_buf, model_size);
|
|
|
+
|
|
|
+ // create context
|
|
|
+ Context *context = new (std::nothrow) Context;
|
|
|
+ if (context == nullptr)
|
|
|
+ {
|
|
|
+ std::cerr << "New context failed while running %s", argv[1];
|
|
|
+ return RET_ERROR;
|
|
|
+ }
|
|
|
+ CpuDeviceInfo &cpu_decice_info = context->device_list_[0].device_info_.cpu_device_info_;
|
|
|
+ cpu_decice_info.cpu_bind_mode_ = HIGHER_CPU;
|
|
|
+ context->thread_num_ = 2;
|
|
|
+
|
|
|
+ // create session1
|
|
|
+ LiteSession *session = LiteSession::CreateSession(context);
|
|
|
+ delete (context);
|
|
|
+ if (session == nullptr)
|
|
|
+ {
|
|
|
+ std::cerr << "CreateSession failed while running %s", argv[1];
|
|
|
+ return RET_ERROR;
|
|
|
+ }
|
|
|
+
|
|
|
+ // compile graph
|
|
|
+
|
|
|
+ int ret = session->CompileGraph(model);
|
|
|
+ if (ret != RET_OK)
|
|
|
+ {
|
|
|
+ std::cerr << "CompileGraph failed" << std::endl;
|
|
|
+ // session and model need to be released by users manually.
|
|
|
+ delete (session);
|
|
|
+ delete (model);
|
|
|
+ return ret;
|
|
|
+ }
|
|
|
+ model->Free();
|
|
|
+
|
|
|
+ // alloc input mem
|
|
|
+ std::vector<tensor::MSTensor *> inputs = session->GetInputs();
|
|
|
+ tensor::MSTensor *input = inputs.front();
|
|
|
+ void *input_buf = input->MutableData();
|
|
|
+ std::cout << "input tenosr num: " << inputs.size() << std::endl;
|
|
|
+ std::cout << "input tensor[0] shape: ";
|
|
|
+ for (int i : input->shape())
|
|
|
+ {
|
|
|
+ std::cout << i << " ";
|
|
|
+ }
|
|
|
+ std::cout << std::endl;
|
|
|
+
|
|
|
+ // get output
|
|
|
+ std::unordered_map<std::string, tensor::MSTensor *> outputs = session->GetOutputs();
|
|
|
+ tensor::MSTensor *output = outputs.begin()->second;
|
|
|
+ std::cout << "output tenosr num: " << outputs.size() << std::endl;
|
|
|
+ std::cout << "output tensor[0] name: " << outputs.begin()->first << ", shape: ";
|
|
|
+ void *output_buf = output->MutableData();
|
|
|
+ for (int i : output->shape())
|
|
|
+ {
|
|
|
+ std::cout << i << " ";
|
|
|
+ }
|
|
|
+ std::cout << std::endl;
|
|
|
+ // infer
|
|
|
+ std::vector<int> result;
|
|
|
+ int IMAGE_NUM = std::atoi(argv[2]);
|
|
|
+
|
|
|
+ std::cout << "inference start" << std::endl;
|
|
|
+ for (size_t i = 0; i < IMAGE_NUM; i++)
|
|
|
+ {
|
|
|
+ read_image(i, input_buf, input->Size());
|
|
|
+ int ret = session->RunGraph();
|
|
|
+ if (ret != RET_OK)
|
|
|
+ {
|
|
|
+ std::cerr << "Run graph failed." << std::endl;
|
|
|
+ return RET_ERROR;
|
|
|
+ }
|
|
|
+ //print_tensor(output);
|
|
|
+ //std::cout << arg_max(output) << std::endl;
|
|
|
+ result.push_back(arg_max(output));
|
|
|
+ std::cout << "\r" << i * 100 / IMAGE_NUM << "%, ";
|
|
|
+ for (int j = 0; j < i * 80 / IMAGE_NUM; ++j)
|
|
|
+ {
|
|
|
+ std::cout << '*';
|
|
|
+ }
|
|
|
+ }
|
|
|
+ std::cout << std::endl;
|
|
|
+ std::cout << "inference finished" << std::endl;
|
|
|
+
|
|
|
+ int correct = 0;
|
|
|
+ for (int i = 0; i < IMAGE_NUM; ++i)
|
|
|
+ {
|
|
|
+ if (label[i] == result[i] - 1)
|
|
|
+ {
|
|
|
+ correct++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ std::cout << "top1 acc: " << correct / (float)IMAGE_NUM << std::endl;
|
|
|
+ return 0;
|
|
|
+}
|