|
@@ -5,17 +5,21 @@
|
|
#include "include/errorcode.h"
|
|
#include "include/errorcode.h"
|
|
#include "include/lite_session.h"
|
|
#include "include/lite_session.h"
|
|
|
|
|
|
|
|
+#include <thread>
|
|
#include <iostream>
|
|
#include <iostream>
|
|
#include <string>
|
|
#include <string>
|
|
|
|
+#include <vector>
|
|
#include <cstdio>
|
|
#include <cstdio>
|
|
|
|
+#include <utility>
|
|
|
|
+#include <tuple>
|
|
|
|
|
|
#include "imagenet_label.inc"
|
|
#include "imagenet_label.inc"
|
|
|
|
|
|
-// model size limit: 64 MiB
|
|
|
|
-const int MAX_MODEL_SIZE = 64 * 1024 * 1024;
|
|
|
|
|
|
+// model size limit: 256 MiB
|
|
|
|
+const int MAX_MODEL_SIZE = 256 * 1024 * 1024;
|
|
|
|
|
|
// dataset
|
|
// dataset
|
|
-const std::string IMAGE_FILE = "/data/val_data_c/%05d.bin";
|
|
|
|
|
|
+std::string IMAGE_FILE = "/data/val_data_c/%05d.bin";
|
|
|
|
|
|
using namespace mindspore;
|
|
using namespace mindspore;
|
|
using namespace mindspore::lite;
|
|
using namespace mindspore::lite;
|
|
@@ -59,13 +63,74 @@ int arg_max(tensor::MSTensor *t)
|
|
return max_idx;
|
|
return max_idx;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+std::tuple<void *, void *, tensor::MSTensor *, tensor::MSTensor *> sessionInOut(mindspore::session::LiteSession *session)
|
|
|
|
+{
|
|
|
|
+ // alloc input mem
|
|
|
|
+ std::vector<tensor::MSTensor *> inputs = session->GetInputs();
|
|
|
|
+ tensor::MSTensor *input = inputs.front();
|
|
|
|
+ void *input_buf = input->MutableData();
|
|
|
|
+ //std::cout << "input tenosr num: " << inputs.size() << std::endl;
|
|
|
|
+ //std::cout << "input tensor[0] shape: ";
|
|
|
|
+ //for (int i : input->shape())
|
|
|
|
+ //{
|
|
|
|
+ // std::cout << i << " ";
|
|
|
|
+ //}
|
|
|
|
+ //std::cout << std::endl;
|
|
|
|
+
|
|
|
|
+ // get output
|
|
|
|
+ std::unordered_map<std::string, tensor::MSTensor *> outputs = session->GetOutputs();
|
|
|
|
+ tensor::MSTensor *output = outputs.begin()->second;
|
|
|
|
+ //std::cout << "output tenosr num: " << outputs.size() << std::endl;
|
|
|
|
+ //std::cout << "output tensor[0] name: " << outputs.begin()->first << ", shape: ";
|
|
|
|
+ void *output_buf = output->MutableData();
|
|
|
|
+ ///for (int i : output->shape())
|
|
|
|
+ ///{
|
|
|
|
+ /// std::cout << i << " ";
|
|
|
|
+ ///}
|
|
|
|
+ ///std::cout << std::endl;
|
|
|
|
+ return {input_buf, output_buf, input, output};
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+mindspore::session::LiteSession *GenerateSession(mindspore::lite::Model *model)
|
|
|
|
+{
|
|
|
|
+ if (model == nullptr)
|
|
|
|
+ {
|
|
|
|
+ std::cerr << "Read model file failed while running" << std::endl;
|
|
|
|
+ return nullptr;
|
|
|
|
+ }
|
|
|
|
+ Context *context = new (std::nothrow) mindspore::lite::Context;
|
|
|
|
+ if (context == nullptr)
|
|
|
|
+ {
|
|
|
|
+ std::cerr << "New context failed while running" << std::endl;
|
|
|
|
+ return nullptr;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ LiteSession *session = mindspore::session::LiteSession::CreateSession(context);
|
|
|
|
+ delete (context);
|
|
|
|
+ if (session == nullptr)
|
|
|
|
+ {
|
|
|
|
+ std::cerr << "CreateSession failed while running" << std::endl;
|
|
|
|
+ return nullptr;
|
|
|
|
+ }
|
|
|
|
+ int ret = session->CompileGraph(model);
|
|
|
|
+ if (ret != mindspore::lite::RET_OK)
|
|
|
|
+ {
|
|
|
|
+ std::cout << "CompileGraph failed while running" << std::endl;
|
|
|
|
+ delete (session);
|
|
|
|
+ return nullptr;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ return session;
|
|
|
|
+}
|
|
|
|
+
|
|
int main(int argc, const char *argv[])
|
|
int main(int argc, const char *argv[])
|
|
{
|
|
{
|
|
- if (argc != 3)
|
|
|
|
|
|
+ if (argc != 5)
|
|
{
|
|
{
|
|
- std::cout << "usage: ./classification your_model.ms image_num" << std::endl;
|
|
|
|
|
|
+ std::cout << "usage: ./classification your_model.ms image_num thread_num imagenetval_path" << std::endl;
|
|
return -1;
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
+ IMAGE_FILE = std::string(argv[4]);
|
|
std::string version = mindspore::lite::Version();
|
|
std::string version = mindspore::lite::Version();
|
|
std::cout << "version: " << version << std::endl;
|
|
std::cout << "version: " << version << std::endl;
|
|
|
|
|
|
@@ -78,88 +143,59 @@ int main(int argc, const char *argv[])
|
|
|
|
|
|
Model *model = Model::Import(model_buf, model_size);
|
|
Model *model = Model::Import(model_buf, model_size);
|
|
|
|
|
|
- // create context
|
|
|
|
- Context *context = new (std::nothrow) Context;
|
|
|
|
- if (context == nullptr)
|
|
|
|
- {
|
|
|
|
- std::cerr << "New context failed while running %s", argv[1];
|
|
|
|
- return RET_ERROR;
|
|
|
|
- }
|
|
|
|
- CpuDeviceInfo &cpu_decice_info = context->device_list_[0].device_info_.cpu_device_info_;
|
|
|
|
- cpu_decice_info.cpu_bind_mode_ = HIGHER_CPU;
|
|
|
|
- context->thread_num_ = 2;
|
|
|
|
|
|
+ int THREAD_NUM = std::atoi(argv[3]);
|
|
|
|
|
|
- // create session1
|
|
|
|
- LiteSession *session = LiteSession::CreateSession(context);
|
|
|
|
- delete (context);
|
|
|
|
- if (session == nullptr)
|
|
|
|
|
|
+ std::vector<mindspore::session::LiteSession *> sessions(THREAD_NUM);
|
|
|
|
+ std::vector<void *> inputs(THREAD_NUM);
|
|
|
|
+ std::vector<void *> outputs(THREAD_NUM);
|
|
|
|
+ std::vector<tensor::MSTensor *> inputTensors(THREAD_NUM);
|
|
|
|
+ std::vector<tensor::MSTensor *> outputTensors(THREAD_NUM);
|
|
|
|
+ for (int i = 0; i < THREAD_NUM; ++i)
|
|
{
|
|
{
|
|
- std::cerr << "CreateSession failed while running %s", argv[1];
|
|
|
|
- return RET_ERROR;
|
|
|
|
|
|
+ sessions[i] = GenerateSession(model);
|
|
|
|
+ std::tuple<void *, void *, tensor::MSTensor *, tensor::MSTensor *> inOut = sessionInOut(sessions[i]);
|
|
|
|
+ inputs[i] = std::get<0>(inOut);
|
|
|
|
+ outputs[i] = std::get<1>(inOut);
|
|
|
|
+ inputTensors[i] = std::get<2>(inOut);
|
|
|
|
+ outputTensors[i] = std::get<3>(inOut);
|
|
}
|
|
}
|
|
|
|
|
|
- // compile graph
|
|
|
|
-
|
|
|
|
- int ret = session->CompileGraph(model);
|
|
|
|
- if (ret != RET_OK)
|
|
|
|
- {
|
|
|
|
- std::cerr << "CompileGraph failed" << std::endl;
|
|
|
|
- // session and model need to be released by users manually.
|
|
|
|
- delete (session);
|
|
|
|
- delete (model);
|
|
|
|
- return ret;
|
|
|
|
- }
|
|
|
|
model->Free();
|
|
model->Free();
|
|
|
|
|
|
- // alloc input mem
|
|
|
|
- std::vector<tensor::MSTensor *> inputs = session->GetInputs();
|
|
|
|
- tensor::MSTensor *input = inputs.front();
|
|
|
|
- void *input_buf = input->MutableData();
|
|
|
|
- std::cout << "input tenosr num: " << inputs.size() << std::endl;
|
|
|
|
- std::cout << "input tensor[0] shape: ";
|
|
|
|
- for (int i : input->shape())
|
|
|
|
- {
|
|
|
|
- std::cout << i << " ";
|
|
|
|
- }
|
|
|
|
- std::cout << std::endl;
|
|
|
|
|
|
+ // infer
|
|
|
|
+ int IMAGE_NUM = std::atoi(argv[2]);
|
|
|
|
+ std::vector<int> result(IMAGE_NUM);
|
|
|
|
|
|
- // get output
|
|
|
|
- std::unordered_map<std::string, tensor::MSTensor *> outputs = session->GetOutputs();
|
|
|
|
- tensor::MSTensor *output = outputs.begin()->second;
|
|
|
|
- std::cout << "output tenosr num: " << outputs.size() << std::endl;
|
|
|
|
- std::cout << "output tensor[0] name: " << outputs.begin()->first << ", shape: ";
|
|
|
|
- void *output_buf = output->MutableData();
|
|
|
|
- for (int i : output->shape())
|
|
|
|
|
|
+ std::vector<std::thread> threads(THREAD_NUM);
|
|
|
|
+ for (int id = 0; id < THREAD_NUM; ++id)
|
|
{
|
|
{
|
|
- std::cout << i << " ";
|
|
|
|
|
|
+ threads[id] = std::thread([&](int id) {
|
|
|
|
+ for (size_t i = id; i < IMAGE_NUM; i += THREAD_NUM)
|
|
|
|
+ {
|
|
|
|
+ read_image(i, inputs[id], inputTensors[id]->Size());
|
|
|
|
+ int ret = sessions[id]->RunGraph();
|
|
|
|
+ if (ret != RET_OK)
|
|
|
|
+ {
|
|
|
|
+ std::cerr << "Run graph failed." << std::endl;
|
|
|
|
+ return RET_ERROR;
|
|
|
|
+ }
|
|
|
|
+ //print_tensor(output);
|
|
|
|
+ //std::cout << arg_max(output) << std::endl;
|
|
|
|
+ result[i] = arg_max(outputTensors[id]);
|
|
|
|
+ }
|
|
|
|
+ },
|
|
|
|
+ id);
|
|
}
|
|
}
|
|
- std::cout << std::endl;
|
|
|
|
- // infer
|
|
|
|
- std::vector<int> result;
|
|
|
|
- int IMAGE_NUM = std::atoi(argv[2]);
|
|
|
|
|
|
|
|
- std::cout << "inference start" << std::endl;
|
|
|
|
- for (size_t i = 0; i < IMAGE_NUM; i++)
|
|
|
|
|
|
+ for (int i = 0; i < THREAD_NUM; ++i)
|
|
{
|
|
{
|
|
- read_image(i, input_buf, input->Size());
|
|
|
|
- int ret = session->RunGraph();
|
|
|
|
- if (ret != RET_OK)
|
|
|
|
- {
|
|
|
|
- std::cerr << "Run graph failed." << std::endl;
|
|
|
|
- return RET_ERROR;
|
|
|
|
- }
|
|
|
|
- //print_tensor(output);
|
|
|
|
- //std::cout << arg_max(output) << std::endl;
|
|
|
|
- result.push_back(arg_max(output));
|
|
|
|
- std::cout << "\r" << i * 100 / IMAGE_NUM << "%, ";
|
|
|
|
- for (int j = 0; j < i * 80 / IMAGE_NUM; ++j)
|
|
|
|
- {
|
|
|
|
- std::cout << '*';
|
|
|
|
- }
|
|
|
|
|
|
+ threads[i].join();
|
|
}
|
|
}
|
|
- std::cout << std::endl;
|
|
|
|
std::cout << "inference finished" << std::endl;
|
|
std::cout << "inference finished" << std::endl;
|
|
-
|
|
|
|
|
|
+ for (int i = 0; i < THREAD_NUM; ++i)
|
|
|
|
+ {
|
|
|
|
+ delete sessions[i];
|
|
|
|
+ }
|
|
int correct = 0;
|
|
int correct = 0;
|
|
for (int i = 0; i < IMAGE_NUM; ++i)
|
|
for (int i = 0; i < IMAGE_NUM; ++i)
|
|
{
|
|
{
|