123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960 |
- import os
- import random
- import shutil
- import time
- import warnings
- import numpy as np
- import torch
- import torch.nn as nn
- import torch.nn.parallel
- import torch.backends.cudnn as cudnn
- import torch.distributed as dist
- import torch.optim
- import torch.multiprocessing as mp
- import torch.utils.data
- import torch.utils.data.distributed
- import torchvision.transforms as transforms
- import torchvision.datasets as datasets
- def convert(image_folder, gpu_id=None, batch_size=1):
- if gpu_id != None:
- torch.cuda.set_device(gpu_id)
- # prepare valid dataloader
- val_transform = transforms.Compose([
- transforms.Resize(342),
- transforms.CenterCrop(299),
- transforms.ToTensor(),
- transforms.Normalize(mean=[0.5, 0.5, 0.5],
- std=[0.5, 0.5, 0.5])
- ])
- val_dataset = datasets.ImageFolder(image_folder, val_transform)
- val_loader = torch.utils.data.DataLoader(
- val_dataset, batch_size=batch_size, shuffle=False,
- num_workers=1, pin_memory=False)
- # valid model in the valid dataloader
- validate(val_loader, gpu_id)
- def validate(val_loader, gpu_id):
- with torch.no_grad():
- if gpu_id != None:
- torch.cuda.synchronize()
- for i, (images, target) in enumerate(val_loader):
- images = images.permute(0, 2, 3, 1)
- #print(images.shape)
- #print(target.item())
- inpy = images.numpy()
- f = open('calib_data_c/%05d.bin'%i, 'wb')
- f.write(inpy.tobytes('C'))
- f.close()
-
- convert('calib_data', 0)
- convert('val_Data', 0)
|