|
@@ -0,0 +1,468 @@
|
|
|
+/*
|
|
|
+ * Advanced Encryption Standard
|
|
|
+ * @author Dani Huertas
|
|
|
+ * @email [email protected]
|
|
|
+ *
|
|
|
+ * Based on the document FIPS PUB 197
|
|
|
+ */
|
|
|
+#include "aes.h"
|
|
|
+
|
|
|
+/*
|
|
|
+ * Addition in GF(2^8)
|
|
|
+ * http://en.wikipedia.org/wiki/Finite_field_arithmetic
|
|
|
+ */
|
|
|
+uint8_t gadd(uint8_t a, uint8_t b) {
|
|
|
+ return a^b;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Subtraction in GF(2^8)
|
|
|
+ * http://en.wikipedia.org/wiki/Finite_field_arithmetic
|
|
|
+ */
|
|
|
+uint8_t gsub(uint8_t a, uint8_t b) {
|
|
|
+ return a^b;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Multiplication in GF(2^8)
|
|
|
+ * http://en.wikipedia.org/wiki/Finite_field_arithmetic
|
|
|
+ * Irreducible polynomial m(x) = x8 + x4 + x3 + x + 1
|
|
|
+ *
|
|
|
+ * NOTE: This function can be easily replaced with a look up table for a speed
|
|
|
+ * boost, at the expense of an increase in memory size (around 65 KB).
|
|
|
+ */
|
|
|
+uint8_t gmult(uint8_t a, uint8_t b) {
|
|
|
+
|
|
|
+ uint8_t p = 0, i = 0, hbs = 0;
|
|
|
+
|
|
|
+ for (i = 0; i < 8; i++) {
|
|
|
+ if (b & 1) {
|
|
|
+ p ^= a;
|
|
|
+ }
|
|
|
+
|
|
|
+ hbs = a & 0x80;
|
|
|
+ a <<= 1;
|
|
|
+ if (hbs) a ^= 0x1b; // 0000 0001 0001 1011
|
|
|
+ b >>= 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ return (uint8_t)p;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Addition of 4 byte words
|
|
|
+ * m(x) = x4+1
|
|
|
+ */
|
|
|
+void coef_add(uint8_t a[], uint8_t b[], uint8_t d[]) {
|
|
|
+
|
|
|
+ d[0] = a[0]^b[0];
|
|
|
+ d[1] = a[1]^b[1];
|
|
|
+ d[2] = a[2]^b[2];
|
|
|
+ d[3] = a[3]^b[3];
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Multiplication of 4 byte words
|
|
|
+ * m(x) = x4+1
|
|
|
+ */
|
|
|
+void coef_mult(uint8_t *a, uint8_t *b, uint8_t *d) {
|
|
|
+
|
|
|
+ d[0] = gmult(a[0],b[0])^gmult(a[3],b[1])^gmult(a[2],b[2])^gmult(a[1],b[3]);
|
|
|
+ d[1] = gmult(a[1],b[0])^gmult(a[0],b[1])^gmult(a[3],b[2])^gmult(a[2],b[3]);
|
|
|
+ d[2] = gmult(a[2],b[0])^gmult(a[1],b[1])^gmult(a[0],b[2])^gmult(a[3],b[3]);
|
|
|
+ d[3] = gmult(a[3],b[0])^gmult(a[2],b[1])^gmult(a[1],b[2])^gmult(a[0],b[3]);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * The cipher Key.
|
|
|
+ */
|
|
|
+int K;
|
|
|
+
|
|
|
+/*
|
|
|
+ * Number of columns (32-bit words) comprising the State. For this
|
|
|
+ * standard, Nb = 4.
|
|
|
+ */
|
|
|
+int Nb = 4;
|
|
|
+
|
|
|
+/*
|
|
|
+ * Number of 32-bit words comprising the Cipher Key. For this
|
|
|
+ * standard, Nk = 4, 6, or 8.
|
|
|
+ */
|
|
|
+int Nk;
|
|
|
+
|
|
|
+/*
|
|
|
+ * Number of rounds, which is a function of Nk and Nb (which is
|
|
|
+ * fixed). For this standard, Nr = 10, 12, or 14.
|
|
|
+ */
|
|
|
+int Nr;
|
|
|
+
|
|
|
+/*
|
|
|
+ * S-box transformation table
|
|
|
+ */
|
|
|
+static uint8_t s_box[256] = {
|
|
|
+ // 0 1 2 3 4 5 6 7 8 9 a b c d e f
|
|
|
+ 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, // 0
|
|
|
+ 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, // 1
|
|
|
+ 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, // 2
|
|
|
+ 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, // 3
|
|
|
+ 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, // 4
|
|
|
+ 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, // 5
|
|
|
+ 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, // 6
|
|
|
+ 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, // 7
|
|
|
+ 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, // 8
|
|
|
+ 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, // 9
|
|
|
+ 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, // a
|
|
|
+ 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, // b
|
|
|
+ 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, // c
|
|
|
+ 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, // d
|
|
|
+ 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, // e
|
|
|
+ 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16};// f
|
|
|
+
|
|
|
+/*
|
|
|
+ * Inverse S-box transformation table
|
|
|
+ */
|
|
|
+static uint8_t inv_s_box[256] = {
|
|
|
+ // 0 1 2 3 4 5 6 7 8 9 a b c d e f
|
|
|
+ 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, // 0
|
|
|
+ 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, // 1
|
|
|
+ 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, // 2
|
|
|
+ 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, // 3
|
|
|
+ 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, // 4
|
|
|
+ 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, // 5
|
|
|
+ 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, // 6
|
|
|
+ 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, // 7
|
|
|
+ 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, // 8
|
|
|
+ 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, // 9
|
|
|
+ 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, // a
|
|
|
+ 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, // b
|
|
|
+ 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, // c
|
|
|
+ 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, // d
|
|
|
+ 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, // e
|
|
|
+ 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d};// f
|
|
|
+
|
|
|
+
|
|
|
+/*
|
|
|
+ * Generates the round constant Rcon[i]
|
|
|
+ */
|
|
|
+uint8_t R[] = {0x02, 0x00, 0x00, 0x00};
|
|
|
+
|
|
|
+uint8_t * Rcon(uint8_t i) {
|
|
|
+
|
|
|
+ if (i == 1) {
|
|
|
+ R[0] = 0x01; // x^(1-1) = x^0 = 1
|
|
|
+ } else if (i > 1) {
|
|
|
+ R[0] = 0x02;
|
|
|
+ i--;
|
|
|
+ while (i-1 > 0) {
|
|
|
+ R[0] = gmult(R[0], 0x02);
|
|
|
+ i--;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return R;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Transformation in the Cipher and Inverse Cipher in which a Round
|
|
|
+ * Key is added to the State using an XOR operation. The length of a
|
|
|
+ * Round Key equals the size of the State (i.e., for Nb = 4, the Round
|
|
|
+ * Key length equals 128 bits/16 bytes).
|
|
|
+ */
|
|
|
+void add_round_key(uint8_t *state, uint8_t *w, uint8_t r) {
|
|
|
+
|
|
|
+ uint8_t c;
|
|
|
+
|
|
|
+ for (c = 0; c < Nb; c++) {
|
|
|
+ state[Nb*0+c] = state[Nb*0+c]^w[4*Nb*r+4*c+0]; //debug, so it works for Nb !=4
|
|
|
+ state[Nb*1+c] = state[Nb*1+c]^w[4*Nb*r+4*c+1];
|
|
|
+ state[Nb*2+c] = state[Nb*2+c]^w[4*Nb*r+4*c+2];
|
|
|
+ state[Nb*3+c] = state[Nb*3+c]^w[4*Nb*r+4*c+3];
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Transformation in the Cipher that takes all of the columns of the
|
|
|
+ * State and mixes their data (independently of one another) to
|
|
|
+ * produce new columns.
|
|
|
+ */
|
|
|
+void mix_columns(uint8_t *state) {
|
|
|
+
|
|
|
+ uint8_t a[] = {0x02, 0x01, 0x01, 0x03}; // a(x) = {02} + {01}x + {01}x2 + {03}x3
|
|
|
+ uint8_t i, j, col[4], res[4];
|
|
|
+
|
|
|
+ for (j = 0; j < Nb; j++) {
|
|
|
+ for (i = 0; i < 4; i++) {
|
|
|
+ col[i] = state[Nb*i+j];
|
|
|
+ }
|
|
|
+
|
|
|
+ coef_mult(a, col, res);
|
|
|
+
|
|
|
+ for (i = 0; i < 4; i++) {
|
|
|
+ state[Nb*i+j] = res[i];
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Transformation in the Inverse Cipher that is the inverse of
|
|
|
+ * MixColumns().
|
|
|
+ */
|
|
|
+void inv_mix_columns(uint8_t *state) {
|
|
|
+
|
|
|
+ uint8_t a[] = {0x0e, 0x09, 0x0d, 0x0b}; // a(x) = {0e} + {09}x + {0d}x2 + {0b}x3
|
|
|
+ uint8_t i, j, col[4], res[4];
|
|
|
+
|
|
|
+ for (j = 0; j < Nb; j++) {
|
|
|
+ for (i = 0; i < 4; i++) {
|
|
|
+ col[i] = state[Nb*i+j];
|
|
|
+ }
|
|
|
+
|
|
|
+ coef_mult(a, col, res);
|
|
|
+
|
|
|
+ for (i = 0; i < 4; i++) {
|
|
|
+ state[Nb*i+j] = res[i];
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Transformation in the Cipher that processes the State by cyclically
|
|
|
+ * shifting the last three rows of the State by different offsets.
|
|
|
+ */
|
|
|
+void shift_rows(uint8_t *state) {
|
|
|
+
|
|
|
+ uint8_t i, k, s, tmp;
|
|
|
+
|
|
|
+ for (i = 1; i < 4; i++) {
|
|
|
+ // shift(1,4)=1; shift(2,4)=2; shift(3,4)=3
|
|
|
+ // shift(r, 4) = r;
|
|
|
+ s = 0;
|
|
|
+ while (s < i) {
|
|
|
+ tmp = state[Nb*i+0];
|
|
|
+
|
|
|
+ for (k = 1; k < Nb; k++) {
|
|
|
+ state[Nb*i+k-1] = state[Nb*i+k];
|
|
|
+ }
|
|
|
+
|
|
|
+ state[Nb*i+Nb-1] = tmp;
|
|
|
+ s++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Transformation in the Inverse Cipher that is the inverse of
|
|
|
+ * ShiftRows().
|
|
|
+ */
|
|
|
+void inv_shift_rows(uint8_t *state) {
|
|
|
+
|
|
|
+ uint8_t i, k, s, tmp;
|
|
|
+
|
|
|
+ for (i = 1; i < 4; i++) {
|
|
|
+ s = 0;
|
|
|
+ while (s < i) {
|
|
|
+ tmp = state[Nb*i+Nb-1];
|
|
|
+
|
|
|
+ for (k = Nb-1; k > 0; k--) {
|
|
|
+ state[Nb*i+k] = state[Nb*i+k-1];
|
|
|
+ }
|
|
|
+
|
|
|
+ state[Nb*i+0] = tmp;
|
|
|
+ s++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Transformation in the Cipher that processes the State using a non
|
|
|
+ * linear byte substitution table (S-box) that operates on each of the
|
|
|
+ * State bytes independently.
|
|
|
+ */
|
|
|
+void sub_bytes(uint8_t *state) {
|
|
|
+
|
|
|
+ uint8_t i, j;
|
|
|
+ uint8_t row, col;
|
|
|
+
|
|
|
+ for (i = 0; i < 4; i++) {
|
|
|
+ for (j = 0; j < Nb; j++) {
|
|
|
+ row = (state[Nb*i+j] & 0xf0) >> 4;
|
|
|
+ col = state[Nb*i+j] & 0x0f;
|
|
|
+ state[Nb*i+j] = s_box[16*row+col];
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Transformation in the Inverse Cipher that is the inverse of
|
|
|
+ * SubBytes().
|
|
|
+ */
|
|
|
+void inv_sub_bytes(uint8_t *state) {
|
|
|
+
|
|
|
+ uint8_t i, j;
|
|
|
+ uint8_t row, col;
|
|
|
+
|
|
|
+ for (i = 0; i < 4; i++) {
|
|
|
+ for (j = 0; j < Nb; j++) {
|
|
|
+ row = (state[Nb*i+j] & 0xf0) >> 4;
|
|
|
+ col = state[Nb*i+j] & 0x0f;
|
|
|
+ state[Nb*i+j] = inv_s_box[16*row+col];
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Function used in the Key Expansion routine that takes a four-byte
|
|
|
+ * input word and applies an S-box to each of the four bytes to
|
|
|
+ * produce an output word.
|
|
|
+ */
|
|
|
+void sub_word(uint8_t *w) {
|
|
|
+
|
|
|
+ uint8_t i;
|
|
|
+
|
|
|
+ for (i = 0; i < 4; i++) {
|
|
|
+ w[i] = s_box[16*((w[i] & 0xf0) >> 4) + (w[i] & 0x0f)];
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Function used in the Key Expansion routine that takes a four-byte
|
|
|
+ * word and performs a cyclic permutation.
|
|
|
+ */
|
|
|
+void rot_word(uint8_t *w) {
|
|
|
+
|
|
|
+ uint8_t tmp;
|
|
|
+ uint8_t i;
|
|
|
+
|
|
|
+ tmp = w[0];
|
|
|
+
|
|
|
+ for (i = 0; i < 3; i++) {
|
|
|
+ w[i] = w[i+1];
|
|
|
+ }
|
|
|
+
|
|
|
+ w[3] = tmp;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Key Expansion
|
|
|
+ */
|
|
|
+void aes_key_expansion(uint8_t *key, uint8_t *w) {
|
|
|
+
|
|
|
+ uint8_t tmp[4];
|
|
|
+ uint8_t i, j;
|
|
|
+ uint8_t len = Nb*(Nr+1);
|
|
|
+
|
|
|
+ for (i = 0; i < Nk; i++) {
|
|
|
+ w[4*i+0] = key[4*i+0];
|
|
|
+ w[4*i+1] = key[4*i+1];
|
|
|
+ w[4*i+2] = key[4*i+2];
|
|
|
+ w[4*i+3] = key[4*i+3];
|
|
|
+ }
|
|
|
+
|
|
|
+ for (i = Nk; i < len; i++) {
|
|
|
+ tmp[0] = w[4*(i-1)+0];
|
|
|
+ tmp[1] = w[4*(i-1)+1];
|
|
|
+ tmp[2] = w[4*(i-1)+2];
|
|
|
+ tmp[3] = w[4*(i-1)+3];
|
|
|
+
|
|
|
+ if (i%Nk == 0) {
|
|
|
+
|
|
|
+ rot_word(tmp);
|
|
|
+ sub_word(tmp);
|
|
|
+ coef_add(tmp, Rcon(i/Nk), tmp);
|
|
|
+
|
|
|
+ } else if (Nk > 6 && i%Nk == 4) {
|
|
|
+
|
|
|
+ sub_word(tmp);
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ w[4*i+0] = w[4*(i-Nk)+0]^tmp[0];
|
|
|
+ w[4*i+1] = w[4*(i-Nk)+1]^tmp[1];
|
|
|
+ w[4*i+2] = w[4*(i-Nk)+2]^tmp[2];
|
|
|
+ w[4*i+3] = w[4*(i-Nk)+3]^tmp[3];
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+/*
|
|
|
+ * Initialize AES variables and allocate memory for expanded key
|
|
|
+ */
|
|
|
+uint8_t *aes_init(size_t key_size) {
|
|
|
+
|
|
|
+ switch (key_size) {
|
|
|
+ default:
|
|
|
+ case 16: Nk = 4; Nr = 10; break;
|
|
|
+ case 24: Nk = 6; Nr = 12; break;
|
|
|
+ case 32: Nk = 8; Nr = 14; break;
|
|
|
+ }
|
|
|
+
|
|
|
+ return malloc(Nb*(Nr+1)*4);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Performs the AES cipher operation
|
|
|
+ */
|
|
|
+void aes_cipher(uint8_t *in, uint8_t *out, uint8_t *w) {
|
|
|
+
|
|
|
+ uint8_t state[4*Nb];
|
|
|
+ uint8_t r, i, j;
|
|
|
+
|
|
|
+ for (i = 0; i < 4; i++) {
|
|
|
+ for (j = 0; j < Nb; j++) {
|
|
|
+ state[Nb*i+j] = in[i+4*j];
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ add_round_key(state, w, 0);
|
|
|
+
|
|
|
+ for (r = 1; r < Nr; r++) {
|
|
|
+ sub_bytes(state);
|
|
|
+ shift_rows(state);
|
|
|
+ mix_columns(state);
|
|
|
+ add_round_key(state, w, r);
|
|
|
+ }
|
|
|
+
|
|
|
+ sub_bytes(state);
|
|
|
+ shift_rows(state);
|
|
|
+ add_round_key(state, w, Nr);
|
|
|
+
|
|
|
+ for (i = 0; i < 4; i++) {
|
|
|
+ for (j = 0; j < Nb; j++) {
|
|
|
+ out[i+4*j] = state[Nb*i+j];
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Performs the AES inverse cipher operation
|
|
|
+ */
|
|
|
+void aes_inv_cipher(uint8_t *in, uint8_t *out, uint8_t *w) {
|
|
|
+
|
|
|
+ uint8_t state[4*Nb];
|
|
|
+ uint8_t r, i, j;
|
|
|
+
|
|
|
+ for (i = 0; i < 4; i++) {
|
|
|
+ for (j = 0; j < Nb; j++) {
|
|
|
+ state[Nb*i+j] = in[i+4*j];
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ add_round_key(state, w, Nr);
|
|
|
+
|
|
|
+ for (r = Nr-1; r >= 1; r--) {
|
|
|
+ inv_shift_rows(state);
|
|
|
+ inv_sub_bytes(state);
|
|
|
+ add_round_key(state, w, r);
|
|
|
+ inv_mix_columns(state);
|
|
|
+ }
|
|
|
+
|
|
|
+ inv_shift_rows(state);
|
|
|
+ inv_sub_bytes(state);
|
|
|
+ add_round_key(state, w, 0);
|
|
|
+
|
|
|
+ for (i = 0; i < 4; i++) {
|
|
|
+ for (j = 0; j < Nb; j++) {
|
|
|
+ out[i+4*j] = state[Nb*i+j];
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|